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Abstract
Helium retention and diffusion in molybdenum is studied on an atomistic scale with ab initio
methods. The thermal stability of helium–vacancy clusters is quantified within the framework
of density functional theory. Calculated helium emission rates are used to derive a desorption
spectrum which is compared with experimental results. The agreement between the current
calculations and available experiments is satisfactory except in the high temperature end of the
spectrum. The current results indicate that above 1100 K He migration is assisted by lattice
defects such as vacancies, rather than through interstitial diffusion.

1. Introduction

In nuclear reactor materials, helium may be introduced
by nuclear reactions. Due to the high heat of solution
of helium in metals it will agglomerate into clusters and
diffuse to dislocations and grain boundaries [1]. This
has important consequences for material properties like,
for example, ductility. Modelling of helium in metals is
well established within the framework of density functional
theory (DFT) [2–10]. However, even though these studies
give essential results for an atomistic description of helium
clustering in metals, most of them do not give sufficient data
for kinetic modelling needed to fully compare the results with
experimental data.

The purpose of this paper is to model the dissolution of
helium clusters in molybdenum, as measured in desorption
experiments [11, 12]. Our modelling is based on standard DFT
calculations providing (i) static information on the structure of
helium clusters and on helium emission activation energies and
(ii) dynamic information on relative vibrational frequencies,
which contribute to the prefactors of the helium emission rates.
Taken together, this gives information on absolute helium
emission rates from clusters of various sizes, which are in
turn used as input in a rate-theory model of helium cluster
desorption spectra. We choose to study molybdenum due
to the existence of well-controlled experiments performed on
single crystals [13, 11, 12]. Thus, in the modelling of helium
desorption, we regard molybdenum as being representative for
the class of bcc metals, and we briefly discuss the implications
of the current findings for the iron–helium system at the end of
this paper.

2. Theoretical background

Most quantitative data on helium retention and diffusion in
metals is based on desorption experiments. In such an
experiment helium release rates from a single crystal injected
with helium is observed while the crystal is being heated at a
constant heating rate. In the crystal, the helium can be assumed
to cluster in molybdenum vacancy positions. Here, these
clusters are denoted HenVm . Under controlled experimental
conditions one can assume the following state evolution for
these clusters [13, 12]:

HenV → He + Hen−1V n > 1 (1)

He1V → He + V n = 1 (2)

where He represents an interstitial helium atom and V a
vacancy. Clusters with more than one vacancy have in this
model been disregarded due to experimental conditions, which
will be discussed in more detail later. Interstitial helium atoms
are assumed to diffuse to the boundary of the crystal and from
there to be released to the surroundings. No recapturing of
interstitial helium in clusters is assumed due to the rather high
heating rate used in experimental work.

For this model the jump rate in between states can be
written [14] as

� = ν∗e−�F/kB T (3)

where ν∗ is an effective frequency associated with the vibration
of the helium atom, �F the free energy change associated
with the jump of a helium atom from a substitutional to an
interstitial position, kB the Boltzmann constant and T the
absolute temperature. However, ν∗ cannot be directly assessed
from experimental data. Therefore another frequency, ν̃, has
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to be introduced by expressing the free energy change in terms
of the change in internal energy, �E , and the entropy change,
�S, by �F = �E − T �S:

� = ν∗e�S/kB e−�E/kB T = ν̃e−�E/kB T . (4)

For the state evolution in (1) and (2) �E can also be interpreted
as the binding energy of a helium atom to the helium–vacancy
cluster. With the state evolution of (1) and (2) and the jump
rate �, a set of ordinary differential equations (ODE) can be
formulated:

dni

dt
= �i+1 − �i (5)

with ni as number of helium–vacancy clusters containing i
helium atoms and �i as the jump rate from a cluster with i
helium atoms to a cluster with i − 1 atoms.

From ab initio calculations ν∗ can be assessed directly. It
is here evaluated by applying the theory of harmonic lattice
vibrations [15], from which the vibrational spectra ω for
helium atom vibrations in the cluster configurations were
calculated. In this work ν∗ was then taken as ν∗ = max(ω).

3. Calculation methods

The current DFT calculations are based on the Vienna ab initio
simulation package (VASP) [16–18] and all calculations were
performed on a supercell containing 4 × 4 × 4 bcc unit cells
with a k-point mesh of 3 × 3 × 3 points and a cutoff energy
of 500 eV. All calculations were performed using the PAW
general gradient approximation (GGA) potentials supplied by
the VASP group [18]. Due to the nonmagnetic nature of
molybdenum nonspin polarized settings were used. The cell
size, k-point density and cutoff energy were selected after
convergence tests on a bulk system, a vacancy state and a
He1V1 cluster, respectively. The convergence with respect
to cell size is crucial in these calculations, mainly since
periodic boundary conditions are implemented in VASP. The
convergence of the total energy in the calculations due to cell
size is affected both by electronic forces and elastic forces in
the crystal. The electronic forces converge as O(L−5) [19],
with L as the cell size, and since the three test cases are
converged regarding this, cells containing larger numbers of
helium atoms should be converged as well. The convergence
of the elastic forces is discussed later.

The absolute energy E of each helium–vacancy cluster
was calculated, and from that the formation energy �Ef from

�Ef = E − NMo E(Mo) − NHe E(He) (6)

where NMo and NHe are the number of molybdenum and
helium atoms in the cell, respectively, and E(Mo) and E(He)
are the absolute energy per atom of bulk molybdenum and a
free helium atom, respectively. From the formation energies
the binding energy of helium atoms to each helium–vacancy
cluster were calculated in line with reactions (1) and (2). ν∗
was calculated as described above for each helium–vacancy
cluster and the interstitial sites. These calculations were
performed by displacing each atom in steps of 0.02 Å twice

in each direction, calculating the forces acting on all atoms and
from that deriving ω.

To calculate ν̃ from ν∗ entropy contributions were
added. Two such contributions were accounted for, first the
configurational contribution from symmetry degeneration due
to the number of ways to orient each cluster in the vacancy
and, second, that due to changes in the vibrational spectra. The
former was calculated from

�S = SHe + SHen−1V1 − SHen V1 = kB ln
WHeWHen−1V1

WHen V1

(7)

with W as the number of possible configurations for each
state lattice atom. To ensure a relaxation of the helium
atoms in each supercell into the most energetically favourable
positions, the atoms were placed in such a way that the
symmetry of the cell was minimized (corresponding to a large
W value) and then allowed to relax into a more symmetric
state. There is a possibility, especially for the clusters with
larger numbers of helium atoms, that there exist several
configurations minimizing the total energy. However, our
approach does not take this into account. The contribution
from changes in vibrational spectra was taken as the ratio of
the maximal frequency of the interstitial state and the initial
state in line with the discussion of Vineyard [14].

The calculated binding energies and ν̃, gave a set of
jump rates {�i }5

i=1 for helium–vacancy clusters containing up
to five helium atoms. With these a system of ODEs were
formulated in accordance with (5). This system was, due to its
nonlinearity, solved numerically by the forward Euler method.

4. Results

The formation energy of the vacancy state, the di-vacancy
cluster and the two highly symmetric and possibly stable
interstitial (octahedral and tetrahedral) states were calculated
and are found in table 2. As seen, the tetrahedral position is the
thermodynamically stable of the two. In fact, after calculating
the migration path in between tetrahedral states, with activation
energy of 0.053 eV, it was concluded that helium migrates
in between tetrahedral states without passing through any
octahedral state, and that the diffusion is close to athermal, and
was therefore considered immediate in the modelling efforts.
These results are qualitatively similar to those for helium in α-
iron calculated by Fu and Willaime [2]. In table 2 it is also
seen that the calculated vacancy formation energy is somewhat
lower than the experimentally determined one, which is due to
the performance of the exchange correlation function in DFT
in this type of system, as discussed by several authors [20, 21].
This could be solved by adding a correction, but so has not
been done in this work since the effect cancels in most cases
when the binding energy is calculated.

It is of importance for the calculation of ν̃ to discuss the
symmetry break of the lattice due to helium–vacancy clusters
since this affects the entropy, as seen from equation (7).
Figures 1 and 2 visualize the equilibrium positions of helium
atoms in the clusters and W as determined from symmetry
considerations of these positions can be found in table 1. As
shown in these figures the helium atom in the He1V1 cluster
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Figure 1. Projection of helium–vacancy clusters and twelve neighbouring molybdenum atoms into a (001) plane. The helium atoms (black)
are in their equilibrium positions but not all in the projection plane, white are nearest-neighbour atoms and grey next-nearest neighbours. Two
next-nearest-neighbours in the centre of each figure are not shown.

Figure 2. Projection of helium–vacancy clusters and fourteen
neighbouring molybdenum atoms into a (11̄0) plane. The helium
atoms (black) are all in their equilibrium positions and positioned in
the projection plane. White atoms are the eight nearest neighbours
and grey the six next-nearest neighbours.

Table 1. Configurational factors used to calculate entropy
contribution for the configurational entropy.

WHe5V1 48
WHe4V1 12
WHe3V1 24
WHe2V1 4
WHe1V1 1
WV 1
WHe 6

has an equilibrium position in the centre of the unit cell, while
the two helium atoms in the He2V1 cluster are positioned on
a (111) line. For the cluster containing three helium atoms
the equilibrium position of these atoms is on the (11̄0) plane
depicted in figure 2. The equilibrium position of helium atoms
in the He4V1 cluster is in the form of a tetrahedron, and in the
case of the He5V1 clusters the configuration can be described
as a tetrahedron with one helium atom on the side.

The binding energies �E and ν̃ were calculated as
described above and can be found in table 3 together with
experimentally determined values from the literature. Using
these values the ODE system of equation (5) was solved for
each set of parameters in the table and these results were
used to calculate desorption spectra, both for the two sets
of experimental data and for the calculations of this work.
These spectra are depicted in figure 3 for a heating rate of
10 K s−1. Also, the actual state evolution was calculated and
can be found in figure 4. When interpreting these figures it is
important to bear in mind that the experimental curves are not a

Figure 3. Helium release rates normalized to the initial value divided
by 10 000 for a heating rate of β = 10 K s−1, results for experimental
parameters from [11] and [12] and this work. It is possible to resolve
peaks for each of the five transitions in each case except for the
He3V1 → He + He2V1 and He2V1 → He + He1V1 in our
theoretical spectra since those are overlapping each other.

Table 2. Calculated formation energies for the vacancy state, the
di-vacancy cluster and the two stable helium interstitial positions.

State Formation energy (eV) Reference [25]

V 2.61 3.0, 3.20, 3.24
V2 5.43
Itet 5.28
Ioct 5.45

reproduction of the experimental results themselves but rather
solutions achieved from modelling efforts with experimentally
determined parameters as input.

5. Discussion

The calculated binding energies are in all but one case lower
than the experimentally determined ones. This could be
explained by the existence of a migration barrier at the
helium–molybdenum interface not included in the calculations.
However, the differences are in most cases smaller than the
deviation between the two experimental series. The calculated
frequencies differ more significantly from the experimentally
determined ones, especially in the case of He1V1 where the
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Table 3. Binding energy and effective frequency for the reaction Hei V j → He + Hei−1V j .

�E (eV) ν̃ (s−1)

State This work Reference [11] Reference [12] This work Reference [11] Reference [12]

He5V1 2.00 2.11 2.32 1.9 × 1013 0.7 × 1013 6.2 × 1014

He4V1 2.54 2.4 2.7 1.6 × 1014 3 × 1013 5.3 × 1015

He3V1 2.54 2.6 2.61 2.3 × 1013 5 × 1013 2.3 × 1014

He2V1 2.67 2.9 2.80 1.9 × 1013 3.0 × 1014 1.4 × 1014

He1V1 3.64 3.8 3.75 7.6 × 1013 5.0 × 1015 3.0 × 1015

He2V2 3.94 — — — — —
He1V2 3.90 — — — — —

Figure 4. Modelling of state evolution with heating rate
β = 10 K s−1: (A) with experimental parameters from [11], (B) with
experimental parameters from [12] and (C) ab initio data from this
work.

difference is almost two orders of magnitude. One explanation
for this could be a large change in entropy not considered in
this work.

The reference experimental data in table 3 are based on
helium desorption spectra. When considering the experimental
observations in figure 3 together with the theoretical results it is
important to remember that the depicted release rate is the sum
of all transitions occurring at that moment in time (here related
to a specific temperature through the constant heating rate).
It is therefore possible to give more than one interpretation
to such a spectrum, and the decomposition of the spectrum
into the state evolutions in figure 4 is not guaranteed to have
one single solution due to the nonlinearity of the jump rate in
equation (4). This is not the case for the theoretical results
since these are derived directly from calculated jump rates, and
therefore give a unique state evolution resulting in a desorption
spectrum.

One could anticipate the contribution of helium dissolu-
tion from other clusters containing more than one vacancy.
However, under the current experimental conditions, such con-

tributions are unlikely. First, the experiments which are repro-
duced here were conducted under controlled conditions where
only thermal vacancies exist in the crystals. The implantation
of helium was then performed with ions having less kinetic
energy than the displacement energy of the molybdenum crys-
tal to avoid radiation damage and thereby increased vacancy
concentrations. The samples were then annealed to avoid over-
saturation of vacancies and clustering of them [11, 12]. The
unlikelihood of having di-vacancies at thermal equilibrium is
also visible when comparing the numbers presented in table 2
since the formation energy of a di-vacancy is more than twice
the formation energy of a mono-vacancy. Second, as shown
in table 3, the binding energies of Hei V2 clusters are signifi-
cantly larger than those of the Hei V1 clusters. This indicates
that if those clusters would, in fact, be present in the crystal
they would be visible as peaks at elevated temperatures in the
desorption spectra: however, no authors report such peaks in
their experimental spectra [11, 12].

In most of the studied helium–vacancy clusters the
molybdenum atoms close to the cluster are significantly
displaced from their equilibrium positions. This causes stress
in the crystal and thereby an increase of the energy from elastic
energy contributions. With periodic boundary conditions
used in the calculations, the radial displacements from mirror
images could affect the final results if the cell size is too small.
To ensure the convergence with regard to cell size in these
calculations the radial displacements, u(r), of molybdenum
atoms for the largest cluster were studied. These are depicted
in figure 5 together with a fit of a theoretical prediction of
these results and the strain that can be derived from these
displacements. From linear elastic theory it can be concluded
that the displacements will vary as [22, 23]

u(r) = A1r + A2

r 2
(8)

with r as the distance from the centre of the defect cluster.
Differentiating equation (8) gives the strain in the system. In
linear elastic theory the elastic energy from, for example, a
defect cluster is independent of system size. The calculations
can therefore be assumed to be converged with respect to
system size if the atoms close to the boundary of the supercell
obey the predictions from linear elastic theory. As seen in
figure 5 the atoms close to the cluster are displaced more than
predicted by elastic theory. However, closer to the border of
the supercell (1.75–3.5 lattice parameters) the atoms obey the
conditions of elastic theory and strains are well below 1%,

4



J. Phys.: Condens. Matter 21 (2009) 335401 O Runevall and N Sandberg

Figure 5. The displacement of each molybdenum atom in a supercell
containing an He5V1 cluster and the stresses in the crystal due to this.
The solid black line is the theoretical displacements; for details see
the text. All lengths are normalized to the lattice parameter.

which means that the calculated energies are convergent with
respect to cell size.

As seen in figures 3 and 4, experimental emission rates
and state transitions are well reproduced for most of the
transitions with the calculated parameters. However, in the
low temperature as well as in the high temperature end of
the spectrum, significant deviations are seen. In the low
temperature regime, the transition from He5V1 to He4V1 is
calculated to occur at lower temperatures than in experiments.
This could be due to the existence of several configurations
of the He5V1 cluster, all minimizing the total energy. If this
would be the case the configurational entropy contribution to ν̃

would be larger, increasing this frequency by a factor identical
to the number of configurations. However, it is worth noticing
that this is also the transition where the two experimental series
differ the most.

The difficulty to model the He1V1 to V transition in
the high temperature end can be attributed to several factors.
First, the error associated with the exchange correlation
functional [20, 21] is most pronounced in the transition from
a molybdenum–helium to a molybdenum–vacuum surface.
Second, the effective frequency calculated is much lower than
the experimentally determined one. This could be due to
entropy factors disregarded in this work. The explanation for
the discrepancy could also come from a modelling error since
the experimental work justifying the model was performed
at 300 K [13], at which temperature the molybdenum atoms
are practically immobile. However, at the temperatures
of the He1V1 to V transition, typically above 1100 K the
molybdenum self-diffusion could be a contributing factor [24],
resulting in substitutional diffusion paths in the crystal.

When comparing the binding energies in table 3 with
those calculated for helium–vacancy clusters in iron [2] one
observes a common trend for both metals; the binding energy
is a decreasing function when the number of atoms in the
cluster increases. This indicates a similarity among the bcc
metals regarding helium cluster dissolution, which could be
anticipated for the inert gas helium dissolved in metals with
the same crystal structure.

6. Conclusions

The current model of helium desorption, which is based
on first-principles data, gives a good representation of
experimentally observed desorption spectra: however, the
He1V1 to V transition temperature is overestimated. This is
most likely attributed to modelling errors. The foundation
of the model assumed by previous authors [11, 12] is
experimental work carried out at room temperature [13].
However, the He1V1 to V transition occurs at much higher
temperatures where self-diffusion in molybdenum could allow
for other, more complicated diffusion paths than the interstitial
one.
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